
Abstract. The problem of de®ning e�cient strategies for
partitioning the cavity surface in QM solvation proce-
dures based on boundary elements methods is consid-
ered here. The GEPOL procedure to get the cavity
surface, and its partition into tesserae is adopted as
a starting point: a version with variable tesselation is
presented. The procedure to build the new sphere
tesselations is described and several di�erent options to
select the surface partition have been implemented. The
e�ects of the variation of the surface partition on the free
energy of solvation of several solutes are also presented.
Two free energy of solvation pro®les evaluated with
several di�erent cavity partitions are analysed. We ®nd
that a radius-driven tesselation for every sphere reduces
the number and extension of the cavity artefacts.
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1 Introduction

The concept of molecular surface, through lacking a
precise de®nition, is so rich in heuristic signi®cance that
it has been used in a large variety of models in almost all
sub®elds of molecular science.

Among these models, we focus our attention here to
models in which this surface is used to de®ne a portion
of space in which other molecules are not allowed, and
to describe properties related to the outer components of
a complex material system. This is the realm of solvation
models, in which a separation between a ``solute'' and a
``solvent'' is introduced. Among these models, which can
be based on discrete or continuous descriptions of the
solvent, we limit our attention to continuous models,
and in particular to the polarizable continuum model
(PCM) we have developed. For a general review on
continuum solvation methods (including PCM) see
Ref [1].

PCM uses a boundary element method (BEM) to
describe the interaction between the solute and the av-
eraged distribution of the solvent.

To implement BEM computational procedures one
has to de®ne the surface limiting the solute, and par-
tition it into small elements. The surface can also be
considered a ``molecular surface'' (the molecule is the
solute, actually a single molecule or a small cluster of
molecules) and the partition of the surface, called tes-
selation, must satisfy some basic requisites. It must
cover the whole surface without juxtapositions or un-
accounted portions of the surface, give a precise value
of the area of tessera and the location of representative
points within the tessera. They must be one point at
least, the centre of the tessera, and in some applications
more, as the vertices of the polyhedron de®ning that
tessera.

Other requirements are less imperative: the surface
can be locally concave or convex, and then the tesserae
are de®ned in terms of polyhedra on a curved surface, or
can be replaced by a discrete set of planar surfaces, with
planar tesserae.

The number of tesserae is another parameter which
can be ®xed as a balance between accuracy of the inte-
gration given via a BEM procedure, and the computa-
tional demands (computation time and occupation of
the computer memory).

In PCM methods (there are a number of variants, see
[2] for a recent account) use is generally made of the GE-
POL procedure to de®ne the surface and its tesselation.

GEPOL was conceived and ®rstly elaborated in our
group as a component of PCM [3] and later revised and
updated, and distributed as an independent code [4].
GEPOL has proven to be successful and is now em-
ployed in many solvation procedures [5, 6] and in other
models not directly related to solvation. We currently
use a derived version, called GEPOL-GB giving the
more detailed information we need to compute the
derivatives of tessera with respect to nuclear coordinates
but otherwise equivalent to the most recent available
GEPOL versions.Correspondence to: J. Tomasi
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In this paper we document some other partitions of
the GEPOL surface, and so it is necessary here to review
a few points concerning GEPOL.

The cavity is de®ned in terms of spheres centred at the
nuclei of the solute. When the radii, Rk, of such spheres
are equivalent to the van der Waals radii Rvdw�k�, the
surface is the van der Waals surface of the molecule Rvdw.
In PCM calculations of the solvent reaction potential
and the electrostatic portion of the free energy, the sol-
vent-excluding surface RE is adopted, in which the radii
Rk are scaled by a factor ak (typically 1.2 for all atoms)
and additional spheres are used. Positions and radii of
these new spheres are determined by the position of the
original spheres and by an additional parameter: the
radius Rs of the solvent. It is not necessary to report the
details of this procedure here; su�ce to say it is an it-
erative procedure giving origin to several ``generations of
spheres''. Some cut-o� parameters avoid an excessive
proliferation of spheres. These additional spheres will ®ll
crevices on the molecular surface too small to accom-
modate solvent molecules and to describe the changes in
the solvent forbidden space during processes of molec-
ular dissociation/association or conformational changes
of a special type which we shall examine later. In both
cases the number of additional spheres can be quite
large. For other applications use is made of the solvent
accessible surface RA, in which all radii Rk are supple-
mented by a constant term equal to the mean radius of
the solvent Rs: R0k � Rk � Rs.

Tesselation in GEPOL is always given in terms of an
inscribed pentakisdodecahedron for each sphere present
in the model. Some tesserae are eliminated because they
are completely within the inner volume, others are cut,
and replaced by spherical polygons of irregular shape,
whose geometric characteristics are determined with the
aid of the Gauss-Bonnet procedure used in GEPOL-GB.

This procedure is quite e�cient, but somewhat rigid.
In some cases the tesserae of the additional spheres have
a small area when compared to others. The number of
the tesserae is an important parameter in assessing the
computational e�ectiveness of the solvation method,
which scales as N 3

t �Nt � total number of tesserae� for
the inversion of the matrix in the BEM procedure and
scales as N 2

t in the evaluation of the solute-solvent in-
teraction integrals. Here we present a method giving
more freedom in the selection of tesserae, supplemented
with a study to ®nd rules to give the best computational
results with the lowest number of tesserae. This paper is
organized in the following way:

1. A description of the procedure used to generate the
surface partition.

2. The description of the implementation within our
PCM-BEM method.

3. The exposition and the discussion of the results
obtained.

2 Polyhedra and geodesic notation

In this work we consider only tesselations with triangu-
lar tesserae derived from pentakisdodecahedrons, tetra-
hedrons and icosahedrons as particular cases of sphere

tesselation. It is well known the sphere tesselation is a
fundamental problem of algebraic topology [7].

Any tesselation of the sphere is related to a plane
polyhedron inscribed in the sphere by a bijective rela-
tion:

1. The vertices of polyhedron and the vertices of
tesselation are the same.

2. Any spherical polygon of tesselation corresponds to a
polyhedron face. The two corresponding objects
share the same vertices.

3. Any great circle arc that connects two vertices of any
spherical polygon of tesselation corresponds to an
edge of the polyhedron with the same two vertices.

The polyhedron properties we shall describe in the
following also apply to tesselations.

A generic polyhedron is topologically determined by
the number of faces (Nt), edges (Ne) and vertices (Nv).
These three quantities are related by the Euler-PoincareÂ
relation [7]:

v � Nv � Nt ÿ Ne : �1�
The Euler-PoincareÂ characteristic v for a polyhedron

inscribed within a sphere is 2 [7].
In a triangular polyhedron

Ne � 3
2 Nt ; �2�

thus

Nv � 2� 1
2 Nt : �3�

A useful tool to describe a polyhedron is the so-called
geodesic notation [8]: fp; qg where p is the number of
faces that share a vertex and q the number of vertices for
each face. If a ``�'' is placed after the q value then all
faces must be divided into triangles by adding an edge
between all vertices of the faces to the medium point of
the corresponding spherical polygon.

The numbers of vertices, triangles, edges and the
geodesic notations for platonic polyhedra and pent-
akisdodecahedron are reported in Table 1.

A large ensemble of polyhedra can be obtained by
equilateral division of any triangular polyhedron [8].

In equilateral division of the order M any primitive
triangle is replaced by M2 triangles:

Nt � Nt0M
2 ; �4�

Nv � 2� 1
2 Nt0M

2 ; �5�
Ne � 3

2 Nt0M
2 ; �6�

Table 1. Faces, vertices, edges and geodesic notations (Geodesic)
for the ®ve platonic polyhedra and for pentakisdodecahedron

Polyhedra Faces Vertices Edges Geodesic

Tetrahedron 4 4 6 {3,3}
Cube 6 8 12 {3,4}
Octahedron 8 6 12 {4,3}
Icosahedron 20 12 30 {5,3}
Dodecahedron 12 20 30 {3,5}
Pentakisdodecahedron 60 32 90 {3,5+}
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where Nt is the ®nal and Nt0 the primitive number of
triangles.

The geodesic notation can be extended to these
polyhedra: fp; qgM ;M the index M is double because a
non-equilateral division also exists. This second proce-
dure leads to polyhedra constituted of triangles greater
in breadth than height as faces, not appropriate for
BEM methods.

The procedure of equilateral division of a triangle is
shown in Fig. 1.

All edges are divided into M equal segments by M ÿ 1
new vertices. Between any pair of new vertices we draw a
new segment (parallel to a primitive edge). These
segments intersect and thus create new vertices but the
vertices do not lie on primitive edges.

Now we derive the expressions for the new vertices
coordinates. The new vertices divide the primitive arc
into M equal arcs. If~v1 and~v2 are the primitive vertices
of the primitive arc, thus

h0 � arccos
~v1 �~v2
~v1j j~v2j j

� �
�7�

is the angle, with respect to the sphere centre, between
the two primitive vertices. A new vertex~v�k� subtends an
angle

h1 � k
N

h0 ; �8�

to~v1, and at an angle of

h2 � N ÿ k
N

h0 �9�

to~v2.
If we write

~v�k� � a~v1 � b~v2 �10�
then, according to Eqs. (7±9):

a � cos k
N h0
ÿ �ÿ cos�h� cos Nÿk

N h0
ÿ �

sin2�h� ; �11�

b � cos Nÿk
N h0

ÿ �ÿ cos�h� cos k
N h0
ÿ �

sin2�h� : �12�

The new vertices not lying on primitive arcs are
determined by a similar procedure. Between any pair of
new vertices, equidistant from a primitive vertex, ~v�l�
and ~v0�l�, there exist lÿ 1 vertices. It is su�cient to
substitute~v1 and~v2 with~v�k� and~v0�k�, and N with l in
Eqs. (10±12).

The vertices establish the metric of the polyhedron.
To complete the polyhedron description we have to
de®ne the triangles. They are represented by a triad of
positive integers each associated to a vertex.

Now consider Fig. 2. This is a matrix representation
of vertices of the equilateral division of a triangle. The
symbols �1; 1�, �1;N�, �N ;N� represent the primitive
vertices, the other elements of the matrix represent new
vertices. The lines shown in the ®gure connect vertices
of the new triangles: these lines represent the arcs. The
primitive triangle is represented by

�1; 1�; �1;N�; �N ;N� : �13�
Simple algebraic observations lead to the following

expressions for new triangles:

�i; j�; �i� 1; j�; �i� 1; j� 1� i � 1;N j � 1; i
�i; j�; �i; j� 1�; �i� 1; j� 1� i � 2;N j � 1; iÿ 1

�14�
the ®rst row leads to N�N � 1�=2 triangles, the second to
N�N ÿ 1�=2.

This procedure builds a tesselation of the sphere as a
set of triangles. These triangles have, in general, no equal
area except if we use the basic polyhedra. This is due to
the fact that the projection on the sphere magni®es the
new triangles by di�erent factors: these are larger for
new triangles that are placed at the centre than for those
placed on the border of the triangle subjected to divi-
sion. The new triangles are similar in area if we start
from a polyhedron with a large number of tesserae like
pentakisdodecahedron.

Fig. 1. a Equilateral division of the second order: the triangle (1; 2;
3) is replaced by the triangles (1; 4; 6), (4; 5; 6), (2; 5; 6) and (3; 4; 5).
b Equilateral division of the third order

Fig. 2. Graphical representation of the equilateral division proce-
dure. The vertices are ordered in the low-triangular part of a square
matrix. The lines are the curvilinear sides (arcs) of the new triangles
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3 Implementation

This method has been implemented in our version of
PCM included in the Gaussian 94 set of programs [9].

There are two options to build the tesselation:

1. TsN option. Each atomic or additional sphere is
partitioned into the same number of tesserae. We
indicate this choice with the notation TsN � N where
N is the number of tesserae in the chosen sphere
tesselation. By setting TsN � 60 we have the tradi-
tional GEPOL cavity.

2. TsA option. For each atomic or additional sphere, the
partition is chosen according to the sphere size: the
program selects, for each sphere, the tesselation that
leads to a tesselar mean area most similar to that of a
given input value. We indicate this choice with the
notation TsA � A where A is the input area in AÊ 2.

We shall limit ourselves to consider the in¯uence of
the cavity partitioning on the electrostatic component of
the free energy of solvation. There are some non-
electrostatic components of the free energy of solvation,
generally they are expressed in the PCM computational
scheme as cavitation, dispersion and repulsion terms
each separately computed. The cavitation term Gcav,
computed with the aid of the Pierotti-Claverie approxi-
mation [1], formally depends on the exposed area of each
sphere, and not on this tesselation. The Floris-Tomasi
[10] formulas for the dispersion and repulsion contri-
butions, Gdis � Grep, actually use a partition of the
surface in tesserae. There is however no important dif-
ference between the use of this partitioning for the
electrostatic and for dispersion-repulsion contributions.
In the electrostatic term the local elements are inserted
into an iterative BEM procedure, quite delicate to han-
dle and time consuming. In the repulsion and dispersion
terms the local elements are directly obtained and sum-
med, and easy to compute. A change in the tesselation
strategy changes Gdis � Grep by an amount less than
0.5% for the whole set of partition examined. The
change in the computation time is completely irrelevant,
given the very short time necessary for these calculations
(less than 1% of the total CPU time).

We do not report a full exposition of the electrostatic
part of the PCM method but we focus our attention on
the more CPU-consuming step: evaluation of the ap-
parent surface charges (ASC). There are several methods
to evaluate ASC [1], we adopt here the direct-BEM
approach:

q � Dÿ1f �15�
where f, q are column vectors of size N (where N is the
number of tesserae) which respectively contain the ¯ux
of the electric ®eld through any tessera of the cavity and
the corresponding ASC.

D is a square N � N matrix with elements

Dkl �
4p�
�ÿ1 1ÿ Ak� � k � l

4p�
�ÿ1 Bkl k 6� l ;

8>><>>: �16�

where Ak and Bkl have the following expressions:

Ak � �ÿ 1

2�
1ÿ

�����������������
DSk

4pR2
k

� �s !
; �17�

Bkl � �ÿ 1

4p�
DSk

~rk ÿ~rl� � � n̂k

~rk ÿ~rlj j : �18�

Here DSk is the area of the kth tessera, Rk is the
curvature radius, rk is the medium point and n̂k is the
unit extern normal vector. For a more detailed presen-
tation of the PCM-BEM approach see [1] and references
quoted therein.

4 Results and discussion

4.1 Fix geometry solutes

We report on the results of systematic ab initio
calculations for ®ve molecules with an extended set
of cavities built with di�erent choices of sphere tessela-
tion.

The basis set 6-31G� and the standard Pauling radii
[11] for atoms have been used. Only the electrostatic
contribution is considered because the other terms do
not sensibly depend on the type and granularity of the
cavity tesselation.

The values of the electrostatic free energy of solvation
for water, hydrogen ¯uoride, acetate anion, glycine
(zwitterionic form) and dioxane in water at standard
pressure/temperature conditions are reported in Tables
2±6. These tables are organized in the following way:

1. The ®rst row of each table reports the various options
for the sphere partition: the TsN options indicated
with 4M2, 20M2 and 60M2 refer to partitions of the
sphere starting from a tetrahedron, a icosahedron and
a pentakisdodecahedron, respectively.

2. For each tesselation option given in the ®rst row we
report the parameter (A or M) on which the calcu-
lation depends, the resulting number of tesserae N
and the unsigned di�erence d with respect to the
convergence value of DGel in k cal/mol.

3. The last row contains the convergence value of DGel.
This value is obtained as the mean of the elements of
each set with the largest number of tesserae.

Some values for coarse partitions of the cavity are not
reported because the relative calculation does not con-
verge. For glycine we also report a graphical represen-
tation of these data in Fig. 3.

As a reference we now consider the standard GEPOL
tesselation: the pentakisdodecahedron (TsN � 60). The
elements of the other sets that have a comparable
number of tesserae are TsN � 4 � 42 for the tetrahedron
series and TsN � 20 � 22 for the icosahedron series. For
the TsA series the answer depends upon the kind of
atoms that constitute the molecule. By examining the
reported cases we obtain a value of TsA � 0:4ÿ0:5AÊ 2.
In all these cases the relative error is limited to 1ÿ2%.
This error is lower than that a�ecting the experimental
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data. The standard tesselation for the spheres can be
thus considered a good choice.

Several sets of calculations show an oscillatory be-
haviour before reaching convergence. This is due to
``roughness'' introduced into the system by the PCM-
BEM approach: every partition of the cavity leads to a
di�erent taxonomy of tesserae cuttings, and thus leads to
a di�erent spectrum of tesserae areas and positions of
medium points. This can give rise to ``local catastro-
phes'' that alter values of the apparent surface charges
introducing a change in the energy. This phenomenon
disappears when we use a number of tesserae 2±4 times
greater than the standard one.

In Table 7 we report some synthetic data about the
rotational invariance of PCM. The tesselation is built,

for each sphere, taking the principal axis of rotation of
the polyhedra parallel to the principal axis of inertia of
the molecule. If we choose a di�erent relative orientation
between molecule and polyhedra there are di�erent
situations of cutting between tesserae and spheres, and
thus the partition of the cavity into tesserae is di�erent.
This procedure does not a�ect the measure of the total
surface area nor the volume of the cavity. We have taken
six di�erent orientations of the water molecule, corre-
sponding to the six permutations of the cartesian axes.
Table 7 has an organization similar to that used for
Tables 2±6: we report, instead of the absolute unsigned
value, the standard deviation of the six values obtained
at ®xed-sphere partition with the six di�erent polyhedra
orientations. The standard deviation corresponds to

Table 2. Electrostatic free en-
ergy of solvation at the HF/
6-31G* level with several cavity
options for H2O. jdj in kcal/mol

TsA � A TsN � 4M2 TsN � 20M2 TsN � 60M2

A Nt jdj M Nt jdj M Nt jdj M Nt jdj
5.0 12 2.04 1 12 2.04 1 48 0.04 1 126 0.05
4.5 22 0.37 2 36 1.02 2 158 0.07 2 427 0.01
4.0 22 0.37 3 76 0.40 3 334 0.01 3 922 0.00
3.5 22 0.37 4 130 0.04 4 558 0.02
3.0 36 1.02 5 198 0.01 5 853 0.00
2.5 36 1.02 6 266 0.04
2.0 40 0.34 7 356 0.03
1.5 40 0.34 8 450 0.01
1.0 60 0.13 9 570 0.00
0.9 76 0.40 10 688 0.00
0.8 96 0.14 11 823 0.01
0.7 96 0.14 12 976 0.00
0.6 100 0.09 13 1124 0.00
0.5 136 0.05 14 1300 0.00
0.4 160 0.00 15 1480 0.00
0.3 210 0.12
0.2 300 0.04
0.1 550 0.00
0.05 1082 0.00

Convergence value: )6.41 kcal/mol

Table 3. Electrostatic free en-
ergy of solvation at the HF/
6-31G* level with several cavity
options for HF. jdj in kcal/mol

TsA � A TsN � 4M2 TsN � 20M2 TsN � 60M2

A Nt jdj M Nt jdj M Nt jdj M Nt jdj
5.0 8 ± 1 8 ± 1 35 0.49 1 85 0.11
4.5 8 ± 2 24 0.06 2 115 0.00 2 330 0.02
4.0 20 0.82 3 54 0.16 3 235 0.00 3 720 0.00
3.5 20 0.82 4 96 0.03 4 415 0.00 4 1245 0.01
3.0 20 0.82 5 138 0.10 5 680 0.01
2.5 20 0.82 6 200 0.05 6 940 0.00
2.0 28 0.43 7 268 0.02 7 1250 0.00
1.5 28 0.43 8 348 0.03
1.0 51 0.12 9 436 0.03
0.9 51 0.12 10 514 0.02
0.8 51 0.12 11 632 0.02
0.7 70 0.08 12 750 0.01
0.6 73 0.19 13 862 0.02
0.5 82 0.14 14 1010 0.00
0.4 93 0.06 15 1146 0.00
0.3 128 0.11 16 1298 0.00
0.2 200 0.01 17 1478 0.00
0.1 381 0.03
0.05 786 0.01

Convergence value: )6.80 kcal/mol
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about 0:5% of DGel for TsA in the range 4:5ÿ0:3 and
TsN in the range 16ÿ200, and practically zero for the
®nest sphere partitions. The rDGel

obtained for TsA � 5:0
as well as for TsN � 4 (leading to two equal cavity
partitions) are zero because the group of rotations
applied to the molecule is as that applied to the cavity.
This accidental rotational invariance leads, however, to
a value of DGel very far from the convergence value. To
have a DGel free from rotational artefacts we have to use
a number of tesserae 2ÿ4 times larger than the ``stan-
dard'' value to avoid ``local catastrophes''.

4.2 Free-energy pro®les

We now pass on to examine a couple of free-energy
pro®les, the ®rst corresponding to a chemical reaction,

the second to a conformational transformation. Both
examples show typical variations of the cavity shape
occurring when a molecular system changes its molec-
ular geometry.

The SN2 reaction

Clÿa � CH3Clb ! CH3Clb � Clÿa ; �19�
selected as ®rst example (Fig. 4), is representative of all
bimolecular reactions A� B! C � D. During the reac-
tion there are two solvent separated species which merge
into a complex structure and then separate again.

The symmetry of our SN2 reaction allows us to ex-
amine half of the energy pro®le only. The unique cavity
present at the transition state is split into two when the
reaction coordinate

rc � rCÿCla ÿ rCÿClb �20�

Table 4. Electrostatic free en-
ergy of solvation at the HF/
6-31G* level with several cavity
options for CH3COO

). jdj in
kcal/mol

TsA � A TsN � 4M2 TsN � 20M2 TsN � 60M2

A Nt jdj M Nt jdj M Nt jdj M Nt jdj
5.0 25 ± 1 25 0.77 1 102 0.10 1 269 0.15
4.5 58 2.73 2 98 0.07 2 331 0.06 2 908 0.02
4.0 58 2.73 3 191 0.23 3 683 0.06
3.5 58 2.73 4 301 0.02 4 1174 0.03
3.0 98 1.27 5 437 0.04
2.5 98 1.27 6 591 0.01
2.0 93 0.08 7 759 0.05
1.5 93 0.08 8 976 0.04
1.0 148 0.07 9 1200 0.01
0.9 191 0.07 10 1459 0.01
0.8 217 0.06
0.7 217 0.06
0.6 231 0.10
0.5 282 0.12
0.4 362 0.09
0.3 447 0.02
0.2 641 0.02
0.1 1149 0.01

Convergence value: )79.80 kcal/mol

Table 5. Electrostatic free en-
ergy of solvation at the HF/
6-31G* level with several cavity
options for +H3NCH2COO

).
jdj in kcal/mol

TsA � A TsN � 4M2 TsN � 20M2 TsN � 60M2

A Nt jdj M Nt jdj M Nt jdj M Nt jdj
5.0 48 ± 1 37 ± 1 143 0.14 1 336 0.06
4.5 63 0.88 2 130 2.98 2 436 0.02 2 1103 0.02
4.0 85 1.65 3 231 0.62 3 874 0.04
3.5 93 1.50 4 372 0.31 4 1434 0.03
3.0 130 2.98 5 525 0.45
2.5 130 2.98 6 719 0.03
2.0 136 0.02 7 940 0.01
1.5 140 0.23 8 1205 0.01
1.0 193 0.83 9 1471 0.02
0.9 237 0.47
0.8 252 0.21
0.7 281 0.18
0.6 305 0.27
0.5 383 0.07
0.4 427 0.05
0.3 532 0.29
0.2 809 0.03
0.1 1435 0.03

Convergence value: )30.96 kcal/mol
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Table 6. Electrostatic free en-
ergy of solvation at the HF/
6-31G* level with several cavity
options for dioxane. jdj in
kcal/mol

TsA � A TsN � 4M2 TsN � 20M2 TsN � 60M2

A Nt jdj M Nt jdj M Nt jdj M Nt jdj
5.0 46 ± 1 46 ± 1 211 0.10 1 476 0.04
4.5 83 3.82 2 186 0.04 2 648 0.12
4.0 97 2.60 3 327 0.38 3 1181 0.03
3.5 97 2.60 4 518 0.19
3.0 171 0.03 5 720 0.09
2.5 171 0.03 6 1012 0.03
2.0 183 0.18 7 1309 0.03
1.5 198 0.18
1.0 238 0.30
0.9 314 0.36
0.8 329 0.38
0.7 358 0.13
0.6 376 0.12
0.5 513 0.21
0.4 548 0.07
0.3 675 0.08
0.2 1052 0.01

Convergence value: )7.40 kcal/mol

Fig. 3. Free energy of solvation for glycine (zwitterionic form)
with di�erent tesselations

Table 7. Standard deviation of
DGel with respect to axes per-
mutation for H2O. rDGel in
kcal/mol

TsA � A TsN � 4M2 TsN � 20M2 TsN � 60M2

A rDGel M rDGel M rDGel M rDGel

5.0 0.00 1 0.00 1 0.06 1 0.02
4.5 0.03 2 0.02 2 0.01 2 0.00
4.0 0.03 3 0.03 3 0.01 3 0.00
3.5 0.03 4 0.01 4 0.01
3.0 0.02 5 0.02 5 0.00
2.5 0.02 6 0.00
2.0 0.03 7 0.00
1.5 0.03 8 0.00
1.0 0.05 9 0.00
0.9 0.03 10 0.00
0.8 0.03 11 0.00
0.7 0.03 12 0.00
0.6 0.02 13 0.00
0.5 0.03 14 0.00
0.4 0.02 15 0.00
0.3 0.03
0.2 0.00
0.1 0.00
0.05 0.00

Fig. 4. Free energy pro®les for the SN2 reaction. Gel is set equal to
zero for TsA � 0:2 at rc � 1. The other curves are shifted by 1 kcal/
mol each to avoid juxtapositions

40



has a value larger than 4:5 �A. To gain a good description
of the e�ect of the cavity variation along the reaction
coordinate we have performed 37 ab initio calculations,
at the HF/6-31G� level. All the geometries are fully
optimized. The recent versions of PCM are all provided
with geometry optimization subroutines [2]. In the case
of the SN2 reaction considered here, the changes in
geometry in passing from vacuum to aqueous solution
are extremely modest: at the TS there is a change in the
RCÿCl distance of 0:017 �A (for more details see [12]). The
energy pro®le of this reaction is not a�ected by the level
at which geometry optimization has been performed.

The analysis of Fig. 4 leads to the following consid-
erations:

1. All the pro®les show some small ``roughness'' espe-
cially with rc in the 4ÿ4:5 �A range. We attribute these
artefacts to the local cavity situation similar to those
described to explain the oscillation in the convergence
of the DGel in the ®rst part of this section. The
number and intensity of these phenomena is lower if
we use a larger number of tesserae and the TsA
option.

2. All pro®les exhibit a step corresponding with cavity
merging. In Fig. 5a±c we report some cavity-related
quantities versus the reaction coordinate: the surface
area, the number of spheres and the number of
tessera. All these quantities show a peak in corre-
spondence with the cavity disjunction.

This phenomenon can be considered to be an intrinsic
characteristic of the solvent-excluding surface: when the
two reagents cavities begin to merge together the sol-
vent-excluding surface becomes larger because the sol-
vent cannot pass through the two reagents. This creates
a ``bridge'' between the two former separated cavities
and thus the area becomes larger. A pictorial example is
reported in Fig. 6. In our system the ``bridge'' was es-
tablished when rc � 4:534 �A corresponding to
rCÿCl0 � 6:330 �A. At values of rc < 4:534 �A the ``bridge''
importance decreases until rCÿCl0 becomes equal to
the sum of the C and Cl0 spheres radii. At this point the
``bridge'' disappears (rCÿCl � 4:140AÊ or rc � 2:344).
From a physical point of view when rc � 4:534 a de-
solvation process begins because an increasing amount
of the two fragments surfaces becomes inaccessible to
the solvent. This explains why the step is negative when
rc increases.

The variation of the number of tesserae with respect
to the reaction coordinate (reported in Fig. 5c) shows a
signi®cant di�erence between the TsN and the TsA op-
tions. In the ®rst case the number of tesserae becomes
four times larger in the cavity merging zone with respect
to the transition state (rc � 0) and reagents (rc � 1)
zones. With the second option the ratio is only 1.2. Be-
cause the increase of the area in the cavity merging zone
does not depend on the cavity partitioning, if we use the
TsN option there is a large number of small tesserae
because the radii of the added spheres are generally
smaller than the atomic ones. With the TsA option we
create tesserae of comparable area. This leads to a better
formulated BEM problem: the D matrix o�-diagonal
elements are proportional to the tesserae area and when

these elements are similar the BEM problem is better
determined.

These considerations lead to the conclusion that the
TsA option give tesselations of better quality than those
obtained with TsN . A value of TsA of 0:4ÿ0:5 �A appears
to be a good compromise between computational cost
and numerical precision.

The second example shows similar phenomena, albeit
of di�erent origin. In conformational changes of mole-
cules of medium-large size it is quite common to have
rotations around a simple sigma bond connecting con-
formations where two groups R1 and R2 of the molecule
are in close contact. They both contribute to de®ne a

Fig. 5. a±c Variations of area a number of spheres b and number
of tesserae c along the reaction coordinate for the SN2 reaction
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portion of the cavity surface, with other conformations
where the groups R1 and R2 are distant contribute to
describe two separate portions of the cavity surface.

Scheme 1

To describe this process we have selected a molecule,
reported in Scheme 1: the 1,2,3,5,6,7-octahexene.

This is a system of limited chemical interest, but
exhibits this conformationl behaviour with the minimal
number of internal rotation degrees of freedom. The free
energy pro®les of this process are reported in Fig. 7.

Fig. 6. Pictorial representation of the cavity evolution along the rc
coordinate with TsA � 0:4. From top to bottom: 1. The transition
state (rc � 0 �A) there are no added spheres; 2. The added spheres
connect the cavity (rc � 4:205 �A); 3. There are two disconnected
cavities but there are solvent-excluding zones (rc � 4:706 �A); 4. The
solvent can move freely between the two cavities (rc � 5:206 �A).
The tessarae displayed here refer to the TsA � 0:4 option. Note that
for numerical calculations it is in general su�cient to have a sphere
partitioning lower than that necessary for a good visual represen-
tation

Fig. 7. Free-energy pro®les for the conformational rotation of
1,2,3,5,6,7-octahexene with di�erent cavity options. Gel is set equal
to zero for TsA � 0:4 for h � 180�. The other curves are shifted by
1 kcal/mol each to avoid juxtapositions

Fig. 8. Variation of area a number of spheres b and number of
tesserae along the torsion angle h for the conformational rotation in
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When the torsion angle h is in the range 0ÿ40� there
are some added spheres that disappear when h is greater
than 40�. For this reaction we have performed ab initio
calculations with 10� steps at the HF/6-31G� level. The
TsA pro®les show less ``roughness'' than the those
obtained with TsN . In this case we do not observe a
desolvation associated step but the choises only a slope
variation around h � 27�. For h > 40� TsN � 60 or
TsA � 0:6 give a similar number of tesserae ('500), for
h � 20ÿ40 the number of tesserae becomes '1300 with
TsN � 60 and '600 with TsA � 0:6, as Fig. 8 shows.
Here again the convenience of using the TsA procedure is
clear.

5 Conclusions

We have tested the convergence properties of the PCM-
BEM electrostatic problem. The standard pent-
akisdodecahedral tesselation is a good choice for the
®xed geometry solutes, equivalent to the TsA � 0:4ÿ0:5
option. The TsA procedure exhibits better behaviour
when we study the free energy variations with respect to
some molecular coordinates and it reduces the number
and the entity of numerical artefacts intrinsic to the
method. These artefacts can be a serious obstacle to the
application of automatic geometry optimization proce-
dures to these systems.

We have found it very bene®cial to use the TsA
partition in the geometry optimization calculations.
A remarkable number of computer-driven geometry
optimizations of solutes fail if the TsA option is not used
(unpublished calculations with V. Barone and M. Cossi).
In a separate paper we shall document our progress in
establishing e�cient computational codes for geometry

optimizations starting from the analytical PCM gradient
formulas [13] and exploiting other procedures estab-
lished in more recent times [2], to which that presented
here has been added.

Acknowledgements. The ®nancial support of CNR is acknowledged.

References

1. Tomasi J, Persico M (1994) Chem Rev 94:2027
2. Amovilli C, Barone V, Cammi R, CanceÁ s E, Cossi M, Mennucci
B, Pomelli CS, Tomasi J (in press) Adv Quantum Chem

3. Pascual-Ahuir JL, Silla E, Tomasi J, Bonaccorsi R (1987)
J Comp Chem 8:778

4. Pascual-Ahuir JL, Silla E, TunÄ on I (1994) J Comp Chem
15:1127

5. Rivail JL, Rinaldi D (1995) In: Leszczynski J (ed) Computa-
tional chemistry, review of current trends. World Scienti®c
Publishing, New York, vol 7, pp 175

6. Cramer CJ, Truhlar DG (1996) In: Tapia O, BertraÂ n J (eds)
Solvent e�ects and chemical reactivity. Kluver, Dordrecht, pp 1

7. Massey WS (1967) Algebraic topology: an introduction. Har-
court, Brace and World, New York, chapter 1

8. Wenninger MJ (1979) Spherical models. Cambridge University
Press, Cambridge, chapter 4

9. Gaussian 94, Revision B.3. Frisch MJ, Trucks GW, Schlegel
HB, Gill PMW, Johnson BG, Robb MA, Cheeseman JR, Keith
T, Petersson GA, Montgomery JA, Raghavachari K, Al-Laham
MA, Zakrzewski VG, Ortiz JV, Foresman JB, Peng CY, Ayala
PY, Chen W, Wong MW, Andres JL, Replogle ES, Gomperts
R, Martin RL, Fox DJ, Binkley JS, Defrees DJ, Baker J,
Stewart JP, Head-Gordon M, Gonzalez C, Pople JA (1995)
Gaussian, Inc., Pittsburgh, Pa

10. Floris FM, Tomasi J (1989) J Comp Chem 10:616
11. Barone V, Cossi M, Tomasi J (1996) Chem Phys Lett 255:327
12. Pomelli CS, Tomasi J (1997) J Phys Chem 101:3561
13. Cammi R, Tomasi J (1994) J Chem Phys 101:3888

43


